LPP Worksheet

Absorption Area

Step 1	is calculating daily waste flow
	Bedrooms at 120 gal/day/bedroom=gal/day
Step 2	Determine loading rate (1 st page of site evaluation)gal/day/ft ²
Step 3	Total area needed for absorption area=
	gal/day divided(load rate)=total ft² needed in absorption area
Step 4	Determine total feet of lateral lines. Spacing between trenches is $5'$ minimum to prevent overloading. Divide total ft^2 by 5 to get total feet of lateral lines.
	ft² divided by 5'=linear feet of lateral lines
*Remer	mber lines cannot exceed 70 ft!
	Number of lines
Septic a	and Pumping Tanks
Septic ta	ank size
Pump ta	ank size (must be at least 2x the total gal/day)
Dosing I	Rate
	<u>Use Constants</u>
	5/32" hole diameter 5' hole spacing 3' head pressure
Step 1	Calculate the number of holes
	Each line is ft divided by 5' spacing = holes per line
	holes x lines = total number of holes
	Flow rate is measured in gal/min
	Flow rate per hole—Use <u>Table 3</u> for flow rates <u>At 3' pressure head + 5/32" holes= .50gal/min</u>
	.50GPM xtotal holes= gal/min
	gar/min
Pump Se	election
Use <u>tabl</u>	e 5 to determine the pump size needed

Total Dynamic Head (TDH)

Static Head + Operating Head + Friction Head = TDH

Static head = vertical distance from pump turnoff level to the point of discharge. Operating head (pressure head) = 3 ft (this is a constant) Fiction head = Resistance to flow from fittings (measured length and loss from fittings) Use table 6. 1. Static head = _ ft 2. Operating head = 3ft 3. Friction head = _____ measured length + _____ loss from fittings = total friction head Divide total friction head by 100 (divided by 100) = per 100ft This gives you feet in 100' increments Using table 5 multiple your friction head per 100ft increments by the figure in table 5 at ____gal/min in 2" pipe _____x ___= ____total friction head Then add your static head _____ + operating head _____ + fiction head ____ = ____TDH *Make sure you use the right pump curve that goes with your individual pump* *Compare the TDH in feet by the total gallon/min to get correct pump size* **Dosing Volume** Use table 4 to find storage capacity. Volume dose= volume supply line + 5(volume lateral lines) 1. Supply line = ____ft for 2" pipe Volume supply = (Length of the supply line divided by 100ft) x 16.2 gal (table 4) = _____gallons 2. Lateral lines = _____ft total of 1 ½ " pipeline Volume laterals = (_____ft divided by 100ft) x gallons (table 4) =____gallons 3. Volume dosing =volume of laterals _____ x 5=- _____gallons + volume of supply **Dosing Depth** Dosing depth = (volume dosed divided by volume tank) x liquid depth of tank in inches (_____) divided by (_____) x (_____)= _____inches The float control switch for the pump should be set for a _____inch draw down to provide automatic doses of _____ gallons. Check Valve Calculation Use check valve only when total storage volume is greater than ¼ of the total daily waste flow. Volume storage= Volume supply line + volume lateral lines (_____) + (_____) = GPD _____GPD x .25 = +____

Table 3
FLOW RATES
(GPM)

Pressure Head Ft	Psi	5/32	Hole Diam 3/16	eter (inches) 7/32	1/4
1	0.43	0.29	0.42	0.56	0.74
1.5		0.35			
2	0.87	0.41	0.59	0.80	1.04
2.5		0.45			
3	1.30	0.50	0.72	0.98	1.28
3.5		0.54			
4	1.73	0.58	0.83	1.13	1.48
4.5		0.61			
5	2.16	0.64	0.94	1.26	1.65
5.5		0.66			
6	2.58	0.69	1.04	1.37	1.81

Table 4

Storage capacity per 100 ft of PVC pipe

Pipe Diameter (inch)	Storage C 60 PSI Sc gal/100 fo	hedule 40
1	5.8	4.1
1 ¼	9.0	6.4
1 ½ lateral	12.5	9.2
2 supply	19.4	16.2
3	42.0	36.7

Table 5
Friction loss per 100 feet of plastic pipe

Flow	Pipe size (inches)						
Rate GPM	1"	1 ¼"	1 ½"	2"	2 ½"	3"	4"
2	0.3						
3	0.6						
4	1.0	0.3					
5	1.5	0.4	0.2				
6	2.1	0.6	0.3				
7 8	2.9	0.8	0.4				
9	3.6 4.6	1.0 1.2	0.5 0.6				
10	5.5	1.5	0.6	0.2			
10	3.3	1.5	0.7	0.2			
12		2.1	1.1	0.3			
14		2.7	1.3	0.4			
16		3.5	1.7	0.5	0.2		
18		4.4	2.1	0.6	0.3		
20		5.2	2.5	0.9	0.3		
21				0.075			
25			3.8	0.975 1.3	0.5		
30			5.2	1.8	0.6		
			3.2	1.0	0.0		
35				2.5	0.8		
40				3.1	1.0	0.4	
45				3.8	1.3	0.6	
50				4.7	1.6	0.7	
60					2.2	0.0	
					2.2	0.9	0.2
70					2.9	1.2	0.3
							0.5
80					3.7	1.5	0.4
00							
90					4.6	1.9	0.5
100							
100						2.3	0.6

Table 6

Friction losses through plastic fittings

In terms of equivalent lengths of plastic pipe

Type Of Fitting	1 ¼"	1½"	2"	2 ½"	3″	4"
90° STD Elbow	7.0	8.0	9.0	10.0	12.0	14.0
45° Elbow	3.0	3.0	4.0	4.0	6.0	8.0
STD. Tee (Diversion)	7.0	9.0	11.0	14.0	17.0	22.0
Check Valve	11.0	13.0	17.0	21.0	26.0	33.0
Coupling or Quick Disconnect	1.0	1.0	2.0	3.0	4.0	5.0
Ball Valve	0.9	1.1	1.4	1.7	2.0	2.3